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ABSTRACT

Uncertainty due to resolution of current satellite-based rainfall products is believed to be an important

source of error in applications of hydrologic modeling and forecasting systems. A method to account for the

input’s resolution and to accurately evaluate the hydrologic utility of satellite rainfall estimates is devised and

analyzed herein. A radar-based Multisensor Precipitation Estimator (MPE) rainfall product (4 km, 1 h) was

utilized to assess the impact of resolution of precipitation products on the estimation of rainfall and sub-

sequent simulation of streamflow on a cascade of basins ranging from approximately 500 to 5000 km2. MPE

data were resampled to match the Tropical Rainfall Measuring Mission’s (TRMM) 3B42RT satellite rainfall

product resolution (25 km, 3 h) and compared with its native resolution data to estimate errors in rainfall

fields. It was found that resolution degradation considerably modifies the spatial structure of rainfall fields.

Additionally, a sensitivity analysis was designed to effectively isolate the error on hydrologic simulations due

to rainfall resolution using a distributed hydrologic model. These analyses revealed that resolution degra-

dation introduces a significant amount of error in rainfall fields, which propagated to the streamflow simu-

lations as magnified bias and dampened aggregated error (RMSEs). Furthermore, the scale dependency of

errors due to resolution degradation was found to intensify with increasing streamflow magnitudes. The

hydrologic model was calibrated with satellite- and original-resolutionMPE using amultiscale approach. The

resulting simulations had virtually the same skill, suggesting that the effects of rainfall resolution can be

accounted for during calibration of hydrologic models, which was further demonstrated with 3B42RT.

1. Introduction

Satellite-based rainfall products have become an im-

portant resource for a broad variety of hydrological ap-

plications over the globe [e.g., flood forecasting, assessing
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water resources, and water management (Hong et al.

2006, 2007; Su et al. 2008; Pereira Filho et al. 2010; see

also https://servirglobal.net/Global.aspx)], particularly

for regions lacking in situ observational systems such as

rain gauge networks. The success of current satellite-

based rainfall estimates lies in their capability to resolve

spatial patterns at scales largely unachievable on a global

or continental scale by rain gauge networks. However,

these estimates are accompanied by a host of uncertainties

associated with the indirectness of distant radiance mea-

surements and the platforms’ limitations to capture the

high spatiotemporal variability of the precipitation-related

observations (McCollum et al. 2002; Sapiano and Arkin

2009; Gourley et al. 2010). Although progress has been

made on characterizing the statistical properties of satel-

lite retrieval error (e.g., Kidd et al. 2003; Hossain and

Anagnostou 2006a,b; Dinku et al. 2010; Scheel et al. 2011)

and their interaction with hydrologic processes and basin

characteristics represented in hydrological models (e.g.,

Hossain and Lettenmaier 2006; Hong et al. 2007; Hossain

andHuffman 2008;Nikolopoulos et al. 2010;Gourley et al.

2011;Maggioni et al. 2011),muchwork is still necessary for

an optimal use of satellite-based precipitation in hydrol-

ogy (Hossain and Katiyar 2008).

Since rainfall is the main forcing for hydrologic models

in the generation of runoff, it is critical to understand

how uncertainties associated to its estimation will

propagate through the nonlinear dynamics embedded in

these models. Arguably, the effects of error in rainfall

volume on the simulation of hydrologic variables, such

as streamflow, are rather intuitive. The spatial and tem-

poral patterns inherent to rainfall, on the other hand,

have been the interest of many hydrological studies (e.g.,

Ogden and Julien 1993; Obled et al. 1994; Koren et al.

1999; Arnaud et al. 2002; Smith et al. 2004; Segond et al.

2007; Younger et al. 2009). Moreover, the association of

errors in volume and spatiotemporal representation of

rainfall estimates with limitations in the precipitation

sampling process has been extensively explored in re-

lation to the effect on hydrologic applications (e.g.,

Kouwen and Garland 1989; Krajewski et al. 1991; Obled

et al. 1994; Ogden and Julien 1994; Faur�es et al. 1995;

Dinku et al. 2002; Syed et al. 2003; Wang et al. 2009;

Kirstetter et al. 2010; Mohamoud and Prieto 2012). This

uncertainty stemming from sampling errors is an im-

portant drawback of the use of satellite-based rainfall

estimates. Several studies have already pointed out that

satellite rainfall products exhibit significant and complex

uncertainty at high spatial and temporal resolutions

(e.g., Kidd et al. 2003; Hossain and Anagnostou 2004;

Nijssen and Lettenmaier 2004; Hong et al. 2006; Scheel

et al. 2011). Thus, a natural consequence is that, although

the error variability in coarse-resolution rainfall products

may be smoothed out, their resolution may not be ac-

ceptable at the scales required for some hydrologic

modeling applications (e.g., flash flood forecasting). It has

been shown that the spatial scale of the application can

impact the propagation of this uncertainty in flood mod-

eling (e.g., Nikolopoulos et al. 2010). Therefore, under-

standing how satellite rainfall retrieval uncertainty

manifests in hydrologic prediction requires studying the

effects of basin-scale and spatiotemporal resolution on

the rainfall error. Accounting for the error due to rain-

fall input resolution in an explicit manner has proven to

be fundamental for evaluating satellite rainfall inputs’

hydrologic potential (Gourley et al. 2011).

In this work, we expand the work of Gourley et al.

(2011) by presenting a methodology to explicitly ac-

count for the effects of rainfall estimates’ resolution in

hydrologic modeling, the basis of which is a parameter

estimation procedure that considers basin scale. As the

effect of satellite rainfall resolution on hydrologic sim-

ulation is a significant one, this study promotes its con-

sideration when evaluating satellite rainfall inputs in

a hydrologic context. A systematic analysis of the effects

of current satellite rainfall products’ resolutions on the

hydrologicmodeling is performed for a cascade of basins

of small to medium size (500–5000 km2). It must be rec-

ognized that the errors in the hydrologic simulation re-

sult from a complex interaction between the uncertainty

in the input (i.e., rainfall), the model structure and ap-

proximations, the estimation of model parameters and

other variables (e.g., potential evapotranspiration), and

observations (e.g., gauged streamflow). In the present

study, the effect of satellite rainfall products’ resolution

was effectively isolated from other sources of uncer-

tainty through a synthetic experiment with a hydrologic

model used in operational settings. Studying the errors

in hydrologic simulation due to rainfall resolution alone

can serve the purpose of indicating the appropriateness

of satellite product resolutions regarding basin-scale and

streamflow magnitude (e.g., water resources manage-

ment versus high-impact flooding events). Likewise, it

can help understand limitations and indicate possible

improvements in the next generation of satellite rainfall

products from the Global Precipitation Measurement

(GPM)mission. In a similarwork,Nijssen andLettenmaier

(2004) explored the impact of sampling error on the pre-

cipitation volume and its subsequent effect on the hy-

drologic modeling of a cascade of basins using gridded

gauge-based estimates and amacroscale hydrologic model.

In the present study, the impact of satellite product reso-

lution on the spatial variability and structure of rainfall

estimates is additionally analyzed.

The key aspects that this work seeks to explore can be

put into context as follows: given that satellite precipitation
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products are available in regions where other sources of

rainfall observations are sparse or nonexistent, it is

critical to establish their usefulness for hydrologic ap-

plications. A common approach in determining the hy-

drologic utility of satellite rainfall consists of calibrating

a hydrologic model to the product subject to evaluation

(see, e.g., Yilmaz et al. 2005; Artan et al. 2007; Yong

et al. 2010). While this method can show the perfor-

mance of the satellite product within the particular

modeling setup, the utility of satellite rainfall is obscured

by the calibration strategy and the model’s ability to

accommodate the observational data (e.g., streamflow)

during estimation of its parameters. An alternative

method consists of calibration of the hydrologic model

to what is considered the ‘‘true’’ rainfall, followed by an

evaluation of the hydrologic simulation’s performance

forced by the satellite product (see, e.g., Su et al. 2008; Li

et al. 2009; Gourley et al. 2011). In this case, the differ-

ences in hydrologic skill stem from inherent abilities to

estimate the rainfall of each product and their corre-

sponding spatiotemporal resolutions. Therefore, elimi-

nating the latter conditioning factor in the evaluation

process is required to accurately reveal the hydrologic

utility of satellite precipitation products. In other words,

an accurate evaluation of the hydrologic utility of satellite

precipitation products as a function of basin-scale and

streamflow magnitude is herein defined as one that can

account for the effects of the precipitation product’s res-

olution. To address this issue, this study aims to establish

how important the effects of rainfall estimates’ resolu-

tion are for hydrologic applications, whether they can be

accounted for or not, and whether this can help to de-

termine the hydrologic utility of satellite rainfall esti-

mation. Several scientific questions are in order:

1) What is the impact of sampling error on rainfall fields

in terms of magnitude, spatial variability, and spatial

structure?

2) How are the corresponding hydrologic simulations

affected?

3) Given the nonlinear nature of hydrologic processes,

are these effects magnified or dampened, and does

the size of the watershed play an important role?

4) Since model calibration is usually employed to

compensate for errors in the input data along with

other sources of uncertainty in the modeling system,

can the effects analyzed in 2) and 3) be effectively

mitigated through adjustment of model parameters?

5) Most importantly, can model calibration serve as a

method to explicitly account for input’s resolution and

accurately reveal the utility of satellite rainfall products?

To answer the aforementioned questions, a high-

resolution, radar-based rainfall product was resampled

to match the resolution of the 3B42RT product from the

Tropical Rainfall Measurement Mission (TRMM;

Huffman et al. 2007). Additionally, the dependency of

the product’s resolution effect on rainfall or streamflow

relative magnitudes (i.e., mean values versus extreme

high values) is studied. Finally, we present a strategy

through the estimation of the hydrologic model pa-

rameters to account for the impact of resolution in the

evaluation of satellite rainfall products. The method is

put to the test using TRMM’s 3B42RT estimates to force

the hydrologic simulations from the resulting model

setup. The remainder of the paper is organized as fol-

lows. Section 2 presents the study area and the data

employed for the experiments. In section 3, the first

three questions are addressed through the synthetic

experiment for isolating the effect of rainfall product’s

resolution. Section 4 reports the analysis of the last two

questions using a general-purpose optimization algo-

rithm, and section 5 summarizes the work and outlines

the conclusions.

2. Study area and data

This study region focuses on the catchment of theU.S.

Geological Survey (USGS) station located at Tarboro

(stream gauge 02083500), a subcatchment of the Tar–

Pamlico River basin located in coastal North Carolina

(Fig. 1). The basin is periodically affected by heavy

rainfall from tropical storms and hurricanes, at which

times major flood events occur. Because of these coastal

impacts, the basin has been a subject of research for the

National Oceanic and Atmospheric Administration’s

(NOAA) Coastal and Inland Flooding Observation and

Warning (CI-FLOW) project (Van Cooten et al. 2011).

Tarboro’s catchment consists of the upper Tar River

and Fishing Creek subbasins for a total drainage area of

5709 km2. Located on the coastal plain, the elevation for

this catchment ranges from 2.8 to 225.7mMSL. The Tar

is a perennial river with a minimum recorded daily flow

of 0.79m3 s21, a mean of 62m3 s21, and a maximum of

1,996m3 s21 at Tarboro. Subhourly streamflow obser-

vations are available at eight interior locations of Tar-

boro spanning from October 1985 to present at the

USGS Instantaneous Data Archive (IDA; USGS 2011).

Five of the measurement sites located on the main stem

were selected to derive hourly streamflow observations

for the experiments conducted herein. The distribution

of the sites forms a cascade of subcatchments ranging

from 529 to 5709 km2.

The quantitative precipitation estimation (QPE) prod-

uct used herein as ground reference was the U.S. National

Weather Service (NWS) Multisensor Precipitation Esti-

mation (MPE) product. MPE data are derived employing
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a blend of automated and interactive procedures to

combine information from satellite, radar, and rain

gauges (Briedenbach and Bradberry 2001; Fulton 2002;

Seo et al. 2010). Hourly MPE data are available for the

Southeast River Forecast Center (SERFC) region at the

Hydrologic Rainfall Analysis Project (HRAP; Schaake

1989) resolution from 2002 to present. The size of an

HRAP grid cell is approximately 4 3 4 km2.

The satellite product used in this work was the near-real-

time infrared andmicrowavemerged TRMMprecipitation

product 3B42RT, version 6. The 3B42RT estimates are

available at 0.258 (;25 km) and 3-hourly time intervals

(Huffman et al. 2007). A total of 8 yr of data (2002–09)

overlapping MPE and 3B42RT archives was employed

and analyzed in this study. The 3B42RT estimates were

resampled to MPE’s HRAP resolution for comparison

and subsequent use in the hydrologic model. Figure 2

presents an evaluation of 3B42RT performance as com-

pared to MPE for the period of data. Mean annual totals

(Figs. 2a,b) are shown along with spatially distributed

relative bias [Eq. (1); Fig. 2c] and relativeRMSE [Eq. (2);

Fig. 2d]:

bias (%)5

�
N

i51

(Xsim
i 2Xref

i )

�
N

i51

Xref
i

3 100 (1)

and

RMSE (%)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(Xsim
i 2Xref

i )2

N

vuuut
Xref

3 100, (2)

where Xsim
i is the variable under evaluation (i.e.,

3B42RT) value at time i,Xref
i is the reference value (i.e.,

MPE) at time i, and Xref is the average reference value

over the simulation interval. The clear southeast–northwest

FIG. 1. Study area showing the selected subbasins (B1–B5) and associated gauge locations within the catchment of Tarboro’s USGS

streamflow gauge station in the Tar River basin, North Carolina. The hydrography of the basin is presented highlighting main streams.
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precipitation gradient over the basin shown in Fig. 2a is

generally well captured by 3B42RT (Fig. 2b). However,

3B42RT significantly underestimates at the upper part

of the basin, where the lowest amounts of rainfall occur.

This can also be seen in Fig. 2c, where values of negative

bias range from about25% to215% for the upper part

and there are areas of overestimation on the middle and

lower parts of the basin. The relative RMSE is signifi-

cantly high, with values ranging from about 550% to

750%, where the highest values generally occur at the

lower part of the basin. These errors result from the

combination of discrepancies between 3B42RT andMPE

in terms of both spatiotemporal resolution and retrieval

capabilities. The following section presents an analysis to

describe the contribution of the input’s resolution to

these errors and its impact on hydrologic predictions.

3. Isolating uncertainty due to rainfall
product resolution

This work concentrated on the error contributed by

the rainfall products’ spatiotemporal resolution. Specifi-

cally, this is the resolution error associated with current

satellite-based QPEs as compared to ground reference

products, which are generally considered as the ground

truth. To create a scenario where all other sources of

uncertainty can be virtually neglected, the reference high-

resolution QPE product (i.e., MPE at 4km, hourly) was

resampled to the coarser resolution of TRMM satellite

products (i.e., 25 km, 3 hourly). The resampling method

consisted of a simple computation of the unconditional

mean of all the 4-km pixels within a given 25-km pixel for

the spatial aggregation [Eq. (3)] and a centered weighted

average computation involving the four closest time steps

for the temporal aggregation [Eq. (4)]:

R25km
i,j 5

�
n

k51

�
�
m

l51

R4km
k,l

�

n3m
(3)

and

R25km
i,j,t 5w1(R

25km
i,j,t211R25km

i,j,t11)1w2(R
25km
i,j,t221R25km

i,j,t12) ,

(4)

where R25km
i,j is the rain rate at the resampled ith, jth

25-km grid point resulting from the average of the 4-km

FIG. 2. Performance evaluation of 3B42RT rainfall estimates for the 2002–09 period at 4-km and 1-h resolutions:

the spatial distribution of mean annual rainfall from (a) MPE and (b) 3B42RT and the spatial distribution of the

hourly-based mean relative (c) bias and (d) percent RMSE.
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grid points in the region delimited by the n 3 m (rows,

columns) box; w1 and w2 are weights for the temporal

averaging of rain rates in the interval from t2 2 to t1 2

with values 0.15 and 0.35, respectively; and R25km
i,j,t is the

rain rate degraded in both spatial and temporal resolu-

tion at time t. In this section, results and their corre-

sponding analysis are based on comparisons between

the high- and coarse-resolution versions of MPE, re-

ferred to hereafter as HR-MPE and CR-MPE, re-

spectively.

a. Effects on rainfall estimates

The first step in this analysis was an examination of the

overall impact of resolution on rainfall estimates. Since

this particular aspect has been well studied and docu-

mented in previous studies (e.g., Obled et al. 1994; Og-

den and Julien 1994), some of the results described

herein are not included in the main document but can be

found in appendix A and B. The difference in resolution

introduces considerably large errors in the estimates

with values of RMSE of about 150%–350% for annual

grids and about 650%–750% for the entire period of

data (Fig. A1). Although the values of bias are in general

not significant, there is considerable variability in some

of the years, with biases ranging from more than 20%

overestimation to about 10% underestimation. More-

over, a clear interannual variability was observed in

terms of these error signatures. This is most probably

related to the rainfall regime and characteristics of in-

dividual storms of each year. Years dominated by small-

scale convection are more likely to be associated with

relatively high RMSE because of a smoothing effect

when aggregating up to the coarser 25-km pixel scale.

This issue was explored through an analysis of the effect

of QPE’s resolution degradation on the spatial structure

of rainfall for 100 representative storm events from the

entire period of record. A relatively simple method

based on variograms (Journel and Huijbregts 1978)

proposed by Lebel et al. (1987) and followed by sub-

sequent studies (e.g., Berne et al. 2004; Kirstetter et al.

2010; Kirstetter et al. 2012) was used herein to charac-

terize the differences in spatial structure between HR-

MPE and CR-MPE. Assuming the rainfall field to be

a realization of a random function, the variogram rep-

resents the spatial correlation of the rain field and is

defined as half the expectation of the quadratic increments

between estimates of rainfall as a function of interdistance

between the points of estimation. In the multirealization

case (e.g., rainfall fields in successive hourly accumulations

for a given event), it is convenient to take into account

information from all the realizations to infer a single and

more robust empirical variogram, assuming the fields to

have similar statistical characteristics except for a constant

factor. Times with zero rainfall are not considered in

computing the variogram. In this study, we used the ap-

proach proposed by Lebel et al. (1987) based on a nor-

malized variogram established by scaling each squared

increment by the field variance. A standard model is fitted

to the empirical mean variogram. The exponential model

of the following general form was found suitable:

g(h)5C01 (C2C0)[12 e(2h)/d] , (5)

where g is the variogram function ranging from 0 to 1; h

is the interdistance in kilometers; and C0 and d are the

variogram model parameters called the nugget (dimen-

sionless) and the range (kilometers), respectively. The

nugget is the value of the variogram at the origin, which

can be related either to variability poorly resolved by the

product or to measurement error (Kirstetter et al. 2010).

The sill, C, is the value at which the variogram asymptot-

ically approaches when h tends to infinity. In the case of

normalized variograms, the sum of the nugget and sill

equals 1.0. The range is the interdistance at which the

variogram reaches the sill and is defined as the mean de-

correlation distance of the measurements, which can be

used as an indicator of the characteristic spatial scale of

a storm: large systems such as tropical storms and hurri-

canes can be characterized by large range values, while

small range values can be associated to small-scale con-

vection. Because this analysis requires a large enough

spatial domain to correctly characterize the spatial struc-

ture of rainfall, it is only applied at the largest scale (i.e., B5

basin). The nugget and range were used herein to describe

the spatial structure of the selected storms.

Figure 3 shows scatterplots of selected variogram pa-

rameters and their association to the effect of resolution

degradation for the 100 events. Figures 3a and 3b directly

demonstrate the modification of rainfall spatial structure

features (i.e., range and nugget, respectively). The effect is

clear and directly proportional to both the nuggets and the

ranges of the storms as observed by the high-resolution

product. The trend of the nugget indicates that for

events with values less than about 0.1, the effect of res-

olution is higher. Furthermore, Figs. 3c and 3d present

the association of the modification of these spatial-

structure characteristics of rainfall to error due to res-

olution degradation. For the case of the variogram range,

there is a direct relationship with the basin-averaged

relative RMSE. This indicates that introduction of spu-

rious spatial correlation due to smoothing effects pro-

motes the introduction of aggregated error, which

increases with decreasing storm scale, as shown in Fig. 3a.

The inverse relationship between nugget ratio andRMSE

displayed in Fig. 3d clearly shows that increasing inabil-

ities to resolve variability at small scales results in error as
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well. These results illustrate that coarser-resolution QPE

results in error as quantified through an analysis of the

spatial characteristics of rainfall fields.

b. Propagation into hydrologic modeling

1) HYDROLOGIC MODEL

The NWS Hydrology Laboratory Research Distrib-

uted Hydrologic Model (HL-RDHM), whose precursor

was the NWS Hydrology Laboratory Research Model-

ing System (HL-RMS; Koren et al. 2004), was employed

here to evaluate the effect of rainfall forcing resolution

on the simulation of streamflow. The modeling system

consists of the Sacramento Soil Moisture Accounting

Model (SAC-SMA; Burnash et al. 1973) for the water

balance/runoff generation and a kinematic wave model

for the hillslope and channel routing. These two com-

ponents are applied to each cell in a rectangular grid at

the HRAP resolution in a polar stereographic projec-

tion, which directly corresponds to the MPE product.

The SAC-SMA is a conceptual rainfall–runoff (CRR)

watershed model widely used within the NWS River

Forecast System (Sorooshian et al. 1993; Boyle et al.

2000; Koren et al. 2004). The model structure and other

details are well described in Koren et al. (2000, 2003,

2004) and Yilmaz et al. (2008), so we focus on the pre-

sentation of the model parameters and their estimation

here. The model simulates runoff generation using 17

conceptual parameters (Table B1). Koren et al. (2000)

developed an approach to estimate values for 11 of the

SAC-SMAparameters based on the State SoilGeographic

(STATSGO; Soil Survey Staff 1994, 1996) soil data. The

remaining six parameters use lumped values established

by the NWS from previous experience on different basins

(Pokhrel et al. 2008; Yilmaz et al. 2008). Another input in

SAC-SMA (i.e., in addition to gridded precipitation data)

is potential evaporation (PE) data. Twelve climatological

mean monthly potential evaporation grids, available at

the HRAP resolution for the continental United States,

were used in this study. HL-RDHM’s user manual (NWS

2008) describes how these grids were derived.

The flow-routing component in HL-RDHM is divided

into hillslope routing (overland flow) and channel routing.

Values for the parameters controlling overland flow

FIG. 3. Effect of resolution degradation on the spatial structure of rainfall for 100 events: (a) HR-MPE range vs

CR-MPE range (solid line represents 1:1 relation), (b) HR-MPE nugget vs CR-MPE nugget (solid line represents 1:1

relation), (c) basin-averaged relative RMSE (%) as a function of the ratio of ranges, and (d) basin-averaged relative

RMSE (%) as a function of the ratio of nuggets (log scale).
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were derived from a high-resolution digital elevation

model (DEM), land use data, and results reported from

initial tests on the model (NWS 2008). The channel

routing parameters qm and q0 were specified using a

discharge to cross-sectional area relationship through

a rating curve method (Koren et al. 2004):

Q5q0A
q
m , (6)

where qm and q0 were determined using measurements

of Q and A data at eight stations within Tarboro’s catch-

ment (USGS stations 02081500, 02081747, 02082506,

02082585, 02082770, 02082950, 02083000, 02083500).

Using HL-RDHM’s built-in tools, spatially distributed

grids for the two channel-routing parameterswere created.

The aforementioned setup yielded amodel referred to

hereafter as the baseline model. Koren et al. (2003) re-

port that the a priori estimates give reasonable initial

values for SAC-SMA parameters and reduce uncer-

tainties in their ranges. Figure 4 presents a 1-yr hourly

simulation of streamflow with the baseline model forced

byHR-MPEat the smallest and largest basins (Figs. 4a,b)

to evaluate the validity of the setup. The simulation was

compared to the observed streamflow, and metrics of

goodness of fit, commonly employed to assess hydro-

logic model performance, were computed to illustrate

the model’s skill in describing the observed overall re-

sponse of the basin to rainfall. Visual inspection of the

hydrographs reveals that even with no calibration in-

volved in the estimation of model parameters, the skill

of the simulation in capturing the direct response to

rainfall (i.e., occurrence of peak flows) as well as the

baseflow in both basins is high. The values of the error

metrics (i.e., relative bias and relative RMSE) are only

slightly higher at the smallest basin because of un-

derestimation of the magnitude of some of the peaks.

The value of the Nash–Sutcliffe coefficient of efficiency

(NSCE), a measure commonly used in hydrology to

summarize simulation skill, is relatively high at the

smallest basin (NSCE 5 0.65) and relatively low at the

largest basin (NSCE5 0.23). The lower value of NSCE

for the simulation at the largest scale is primarily a result

of low covariance between observed and simulated

streamflow time series due to timing offsets. This timing

issue is caused by limitations in the estimation of the

routing parameters [i.e., qm and q0 in Eq. (6)], which

have a larger impact on medium-to-large basins given

that the lag in the response to rainfall is directly corre-

lated to catchment size. Dramatic improvement in sim-

ulation timing can be achieved by only adjusting the two

routing parameters (NSCE above 0.8; not shown here).

2) SENSITIVITY OF STREAMFLOW SIMULATIONS

TO RAINFALL RESOLUTION ALONE

We use the baseline model to isolate error in the

hydrologic simulations associated to rainfall forcing’s

FIG. 4. Simulation of streamflow during 2006 with the baseline model at (a) smallest-scale

basin (B1) and (b) largest-scale basin (B5). Measures of performance for the simulation are

presented in the legend.
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resolution alone, because the parameters are based on

soil and land use data that are independent from the

rainfall algorithms. A calibrated model, on the other

hand, will be conditioned on the input and reference

data (e.g., measured streamflow). To neglect the other

sources of uncertainty, including model structure and

approximations, the simulation forced by HR-MPE was

used as the reference to evaluate precipitation resolu-

tion errors in the hydrologic simulation forced by CR-

MPE. The use of hydrologic simulations as reference

also enables us to compare simulations at each grid point

across scales. The basic assumption of this synthetic

experiment is that the hydrologic model represents ba-

sin response to rainfall and that the HR-MPE dataset

represents the actual surface rainfall; loss in skill in the

hydrologic simulations using the CR-MPE forcing is from

precipitation estimate’s resolution alone. The analysis

presented herein was fixed to the hourly modeling tem-

poral scale since, first, this is the reference resolution of

HR-MPE and, second, it is the scale at which resampled

rain estimates exhibited the greatest uncertainty (Fig. A2).

Figure 5 presents a grid-based comparison of simu-

lated streamflow forced by CR-MPE and the synthetic

reference for the 2002–09 period. Overall, we notice that

streamflow is underestimated across the catchment, al-

though there is some overestimation in Fishing Creek’s

subcatchment (upper portion of Tarboro’s catchment).

Additionally, the propagation of aggregated errors from

the CR-MPE rainfall to streamflow presents a clear pat-

tern. The relatively low RMSE and high NSCE values are

collocated in large-scale streams and rivers. Furthermore, it

can be seen how the model performance degrades moving

in the upstream direction toward headwaters. This is con-

sistent with results from previous studies in relation to the

inverse association between resolution impact and drain-

age area (e.g., Nijssen and Lettenmaier 2004). A more

detailed investigation on basin-scale dependence follows.

A summary of the magnitude of errors in rainfall and

streamflow for the 2002–09 period and the five basins

considered in this work are presented in Table 1. The

relative RMSE and NSCE of streamflow generally im-

prove with increasing basin scale. The relative bias, on

the other hand, does not display a clear trend with basin

scale. The values of bias seem to worsen from B1 to B4,

but it improves when going to B5. This behavior is con-

sistent with the mean relative bias of rainfall and the

gradient of mean rainfall over the basin shown in Fig. 2a.

Moreover, it can be seen that the global bias in stream-

flow simulations stemming from QPE resolution differ-

ence is relatively low, while the RMSE is considerably

high. Figure 6 shows the same metrics in Fig. 5, but ex-

pressed as ratios to corresponding rainfall error and

plotted as a function of basin catchment area for different

streamflow thresholds. These results illustrate the error

propagation and possible dampening or magnification of

resolution-related errors by the nonlinear transformation

of rainfall to runoff in integrated basins. Nikolopoulos

et al. (2010) examined rainfall error propagation in a

complex terrain basin in northeastern Italy and found

that it depended on the metric of reference. For example,

the relative error in rainfall translated to a lower relative

error in runoff volume, while the same rainfall error re-

sulted in a magnified relative error in peak discharge (in

most ensembles). In our case, the global bias in rainfall

significantly magnified into higher global bias in stream-

flow. Moreover, this magnification increased with de-

creasing basin scale with an abrupt jump from a factor of

about 6.0 to a factor of a little over 20.0 when going from

B2 to B1 for the case that considers all flow values [i.e.,

the thick black line, Q (100%)]. On the other hand, the

aggregated errors in rainfall were greatly dampened in

the streamflow simulations. Furthermore, the reduction

in error directly correlated with basin scale with a factor

close to 6.0 (Q toRRMSE ratio of;0.17) for B1 and over

20.0 (Q to R RMSE ratio of ;0.048) for B5 for the case

that considers all flow values.

Figure 6 also presents metric values for different

streamflow exceedance thresholds. It can be seen that

FIG. 5. Grid-based comparison of streamflow forced by CR-MPE andHR-MPE for the synthetic experiment: (a) relative bias, (b) relative

RMSE, and (c) NSCE.
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the impact of QPE resolution difference increases non-

linearly as the probability of occurrence of streamflow

decreases, which negatively affects the skill of the mod-

eling system to simulate extreme flooding events. The

difference in relative RMSE (inferred from the differ-

ences inQ to R ratio) and NSCE betweenQ (100%) and

Q (10%) is greatest at the smallest basin scales. Also, the

QPE resolution impact appears to be greatest for the

highest flow thresholds and at the smallest basin scales,

which have implications on hydrologic applications such

as flash flood modeling. Furthermore, the dampening of

random error decreases with increasing streamflow

threshold. On the other hand, the global bias and its

magnification are not significantly affected. A reduction

on the magnification, however, can be noticed when

considering the highest flow thresholds [i.e., Q (10%)].

Last, the effect of resolution is assessed at the scale of

specific events, which allows for a more detailed exam-

ination of the rainfall error propagation to streamflow

simulations. Figure 7 presents a summary of the error

features of rainfall estimates (i.e., magnitude, spatial

variability, and spatial structure) introduced by resolu-

tion degradation and their propagation to hydrologic

simulations. The sample of 100 events used in the anal-

ysis in section 3a was employed for this purpose. The

error magnitude was defined as the basin-averaged

mean differences between CR-MPE and HR-MPE over

the event interval. Similarly, the error spatial variability

was defined as the mean basin standard deviation of

differences between CR-MPE and HR-MPE over the

event interval. Finally, the error spatial structure was

defined computing the variogram of rainfall differences

between CR-MPE and HR-MPE for each event and

comparing their ranges to those of HR-MPE’s vario-

grams. These rainfall error features were contrasted to the

corresponding streamflow error across the basin (y axis

for error magnitude and error variability panels) and at

the basin outlet described by the relative bias (top panels)

and relative RMSE (bottom panels).

In terms of error magnitude (Fig. 7, left), there is a

definitive connection between basin-averaged rainfall

and streamflow errors. Moreover, the relative bias in

streamflow simulations at the outlet is clearly associated

to the aforementioned connection of error magnitudes.

The relative RMSE displays a similar association with

the basin-averaged differences. Furthermore, it can be

observed that most of events with relatively low RMSE

(i.e., below ;20%, blue-colored events) are associated

to events with positive bias (around 10%–20%). This

indicates that the effect of resolution for these particular

events is mostly reflected in relative bias. In terms of

error spatial variability (Fig. 7, middle), rainfall differ-

ences also correlate to streamflow differences across the

basin, although not as strongly as the error magnitude

does. However, there is not a clear association with

TABLE 1. Summary of overall error metrics for basin-averaged

rainfall and streamflow at basin outlet for the 2002–09 period.

Values are presented for all subbasins.

Rainfall error Streamflow error

Subbasin

Bias

(%)

RMSE

(%)

Bias

(%)

RMSE

(%) NSCE

B1, 529 km2 20.25 674 25.33 112 0.72

B2, 1089km2 21.10 675 26.71 77.7 0.79

B3, 1982km2 22.67 675 211.21 57.1 0.84

B4, 2365km2 22.95 682 212.03 68.3 0.80

B5, 5709km2 21.96 691 28.17 33.1 0.94

FIG. 6. Overall propagation of mean rainfall error to streamflow simulations. Metrics of model performance as functions of basin area

and streamflow threshold are presented: (a) ratio of streamflow (Q) relative bias to rainfall (R) relative bias, (b) ratio of streamflow (Q)

relative RMSE to rainfall (R) relative RMSE, and (c) NSCE of streamflow simulations. The values between parentheses indicate the

probability of occurrence of the corresponding threshold.
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either bias or RMSE of streamflow at the basin outlet.

Finally, the graphs of error spatial structure (Fig. 7,

right) show a linear and direct relationship between the

size and/or level of organization of the storms and the

spatial correlation structure of the rainfall error, which is

consistent with results from section 3a. In terms of the

association with error in streamflow simulations at the

outlet, there are mainly two aspects that can be ob-

served: 1) even though there is not a very clear trend of

the error as depicted by the color gradients, it is possible

to distinguish subgroups of events associated with sec-

tors in the error range [i.e., events with RMSE values

greater than ;60% (red-colored points) are grouped

toward the lower-left side of the graph, which corre-

sponds to the lower values of variogram’s range], which

is seen in both the relative bias and the relative RMSE,

and 2) events with the highest values of streamflow error,

both bias andRMSE, are associated to lower characteristic

spatial scale. The first aspect is most probably related to

specific conditions of each event that were not ac-

counted for, such as the antecedent soil conditions or the

proximity of the storm to the basin outlet. This might

also explain why it is not possible to observe a clear re-

lationship between error in the spatial structure of rainfall

and error in streamflow at the basin outlet. However, the

second aspect indicates that error due to resolution in

the estimation of rainfall from small-scale convection will

have higher impact on streamflow simulations.

4. Mitigating input’s resolution impacts through
model calibration

a. Evaluation of differences due to rainfall resolution

A standard procedure when setting up an operational

hydrologic model is the calibration of its parameters

FIG. 7. Summary of error features and their propagation to streamflow modeling at basin outlet for the 100 events. (left) Error mag-

nitude, (middle) error variability, and (right) error spatial structure. The (top) relative bias and (bottom) relative RMSE were computed

for streamflow simulations forced by CR-MPE as compared to streamflow simulations forced by HR-MPE at the basin outlet.
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using observations of rainfall and streamflow. This has

become a common practice in studies that assess the

hydrologic utility of satellite-based QPE, where the

hydrologic model is calibrated at the scale correspond-

ing to the algorithm’s pixel resolution or to the resolution

of a reference rainfall dataset (e.g., from rain gauges). The

calibrated parameter set is highly dependent on the

characteristics of the QPE used to force the model

during the calibration period. Other variables such as

the length of period during calibration and the vari-

ability of flow conditions and events in the calibration

period also play an important role during the adjustment

of the parameters. However, the discussion in this sec-

tion is focused on the differences in model performance

caused by QPE resolution. More specifically, the ob-

jective is to assess the extent to which model calibration

can compensate for errors due to QPE resolution. Other

issues in the satellite QPE, such as biases and random

errors inherent to the retrieval process, are not explicitly

accounted for in the model parameter estimation.

The hydrologic model was calibrated using a general-

purpose optimization algorithm entitled Differential

Evolution Adaptive Metropolis (DREAM; Vrugt et al.

2009). DREAM is an adaptation of the widely used

University of Arizona shuffled complex evolution algo-

rithm (SCE-UA; Duan et al. 1993). The algorithm em-

ploys Markov chain Monte Carlo (MCMC) sampling to

estimate the posterior probability density function of

parameters using a formal likelihood function, which

ensures a collective evolution of the model parameters

(i.e., all parameters are optimized simultaneously to ac-

count for interdependencies among them). The algorithm

is designed to operate in complex, high-dimensional

sampling problems (Vrugt et al. 2008). The reader is en-

couraged to review the work by Vrugt et al. (2009) for

more details regarding DREAM. A period of 3 yr (2004–

06) of USGS gauge streamflow observations was used

as the reference in the calibration process to compute

the sum of squared residuals (SSR; i.e., the objective

function). In addition to SSR, a constraint was set in

DREAM’s algorithm for selecting parameter sets that

produced relatively unbiased simulations (i.e., relative

bias , 10%). The starting point or benchmark of this

calibration was the baseline model described in section

3b(1). Since the baseline model has spatially distributed

parameters estimated from soil and stream observations,

the calibration approach was used to generate scaling

factors, and thus, the spatial variability dictated by the

observations is maintained (i.e., the relative differences

among grid cells is preserved). An independent valida-

tion period consisting of the data not used for calibration

(i.e., 2002–03 and 2007–09) was used to assess the suit-

ability of the resulting parameter sets in terms of relative

performance of model skill, conditioned on the different

parameter sets. Note that the validation of the method to

account for QPE product’s resolution is presented in

section 4b.

To explore the effectiveness of model calibration for

mitigating rainfall-resolution errors as a function of

spatial scale and to account for scale dependencies in the

hydrologic model, each QPE product (i.e., HR-MPE

and CR-MPE) was used to automatically calibrate the

model parameters at each basin independently; that is,

calibration was performed over the entire area associ-

ated to each basin (i.e., B1 through B5) ignoring ob-

servations at interior locations (e.g., B3 is calibrated

over its entire catchment, ignoring the fact that B2 and

B1 exist within it). This array of multiple independent

parameter sets is referred to hereafter as ‘‘local’’ cali-

bration, as each parameter set was derived specifically to

the basin and to the QPE input. The parameter set that

was generated by calibrating the model at the largest

scale (i.e., B5) was used to simulate streamflow at in-

terior gauged points to be compared to simulations

produced by the local calibration. Therefore, the B5

calibration is referred to hereafter as ‘‘regional.’’

Metrics of overall performance for the resulting cali-

brated model realizations during both calibration and

validation periods are presented in Fig. 8 as a function of

basin area. When comparing the results from CR-MPE

and HR-MPE in the local calibration runs, we see their

skill metrics are very similar, with the only exception in

the smallest-scale basin, where differences exist mainly

in terms of the direction of bias (i.e., HR-MPE yields

a bias of about 10%, while CR-MPE yields a bias of

about 210%). Although these similarities in skill (i.e.,

the closeness of performance metrics across basins) are

somewhat reduced during the validation period, partic-

ularly for drainage areas under 2000 km2, these results

indicate that errors due to QPE resolution can be miti-

gated or, in other words, accounted for with adjustment

of the hydrologic model parameters. Figure 9 presents

a comparison of the resulting adjusted parameters after

calibration runs forced by HR-MPE and CR-MPE. The

values are presented as ratios of CR-MPE-based pa-

rameters to HR-MPE-based parameters. These ratios

were plotted against basin area to check for correction

of basin-scale effects observed in the differences be-

tween CR-MPE and HR-MPE in section 3b(2). Some

parameters display a clear trend with respect to basin

area, which is an indication of the impact of basin-scale

and rainfall-resolution difference effects on the calibration

results. Such is the case for parameters like UZTWM,

UZK, PCTIM, RIVA, ZPERC, LZTWM, LZFPM and

LZPK (see Table B1 in appendix B for descriptions).

Other parameters do not display any trend, which is an
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indication of low sensitivity to basin-scale effects. More-

over, these random differences in the adjustment of some

model parameters between CR-MPE and HR-MPE

demonstrate the compensatory effects of model cali-

bration given the random nature of errors introduced by

resolution degradation and the stochastic features of the

optimization algorithm. The global bias (i.e., the nega-

tive bias of CR-MPE streamflow simulations as com-

pared to HR-MPE simulations), on the other hand, was

consistently corrected after adjustment of some pa-

rameters toward an increase in runoff generation (i.e.,

the upper-zone depletion rate UZK or the impervious

area fraction PCTIM, which directly control runoff gen-

eration, and the ratio of percolation rates ZPERC, which

controls how much water is lost to the soil). These results

might indicate that some parameters could yield reduction

of systematic errors when perturbed in a predefined

fashion, which would have implications on the issue of

parameter transferability to other basins. However, this

aspect was not further explored in the present study.

The comparison between local and regional simula-

tions reveals much skill is improved during the calibra-

tion period at all basin scales and QPE resolutions using

the locally optimized parameter settings (Fig. 8). These

local-scale improvements, however, diminish and are

essentially indistinguishable from the skill attained with

the regional model during the validation period. Note

these levels of skill are only achievable by accounting for

the QPE-resolution effect in the calibration process.

This result has significant implications for forecasting

streamflow at ungauged, interior points using a model

calibrated with observations at the basin outlet. A nat-

ural extension of this result is an analysis of the limiting

catchment size for which the regional calibration is effective

FIG. 8. Summary of (left) calibration and (right) validation results. Metrics of model performance are plotted

against basin area for the five subbasins. The ‘‘R’’ and ‘‘L’’ refer to regional and local calibration runs, respectively.
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over different regions, which should be investigated in

future works.

Last, we notice that the relative RMSE is the only

metric that clearly displays the impact of basin scale

even during the calibration period, which is most evident

for basins under 2000 km2. The impact of basin scale on

relative RMSE observed here is consistent with what

was observed in the synthetic experiment [section 3b(2)]

and previous studies such as the ones by Nijssen and

Lettenmaier (2004) and Nikolopoulos et al. (2010), al-

though the latter found a rather counterintuitive be-

havior: the values of relative RMSE increased with

increasing basin size. Nevertheless, these results suggest

that the effects of basin scale on aggregated errors might

be resistive to model calibration.

b. Validation of method with 3B42RT: Revealing
the utility of satellite estimates

Up to this point, it has been shown that the use of

rainfall estimates matching satellite’s coarse resolution

has a significant impact on the hydrologic modeling of

a cascade of basins as compared to the use of a high-

resolution rainfall product. Furthermore, it has been

demonstrated that this impact can be reduced through

adjustment of the parameters of the hydrologic model.

The last step of this study was to evaluate whether the

information gained in the calibration process in terms of

input’s resolution could be transferred to simulations

forced by 3B42RT estimates and more accurately reveal

its hydrologic skill. This has important implications in

FIG. 9. Comparison of adjusted hydrologic model parameters after calibrations forced by HR-MPE and CR-MPE. The graphs present

CR-MPE to HR-MPE ratio of parameter basin average values (y axis) vs basin area (x axis). The solid horizontal line in each panel

indicates where the ratio is 1.0.
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relation to the use of satellite rainfall estimates for hy-

drologic applications in ungauged basins. Note that the

parameter sets resulting from the calibration process in

section 4a are assumed to be representative of the true

and best characterization of basin physical properties

and processes. Therefore, the resulting model configu-

ration may be used for an evaluation of alternative input

data such as satellite rainfall products.

Streamflow simulations for the period of data (i.e.,

2002–09) were thus generated, forcing the hydrologic

model with 3B42RT using both locally optimized sets of

parameters (i.e., local CR-MPE and HR-MPE associ-

ated parameter sets). Figure 10 presents metrics of skill

for the overall performance of both models at the se-

lected basin scales and for different streamflow thresh-

olds. In terms of relativeRMSE, there are little differences

between the simulations, which might indicate that ag-

gregated errors from other sources of uncertainty in the

generation of the 3B42RT product overshadow the

resolution effect. In terms of relative bias, however, it

can be seen that the model calibrated with CR-MPE

performed better than the model calibrated with HR-

MPE, although the differences reduce with decreasing

basin scale and streamflow probability of occurrence.

In terms of the general performance of 3B42RT, the

significant negative bias, which increases toward the

headwater basin, is consistent with the gradient of rainfall

bias observed in Fig. 2c. These results clearly indicate that

accounting for satellite-based QPE’s resolution in an

explicit manner can help in the evaluation of 3B42RT’s

hydrologic utility.

This overall improvement in bias on the simulations

forced by 3B42RT relates back to the compensation

from the adjustment of parameters analyzed in section

4a. These results support the idea that model calibration

can be used to account for inputs’ resolution. The basis

of the approach lies in the fact that it is possible to force

model calibration to place emphasis on a desired cor-

rection. We have purposely introduced ‘‘extra’’ error in

the input data (i.e., HR-MPE) by altering its resolution

(i.e., CR-MPE), which results in adjustments of model

parameters to reduce the overall error in the hydrologic

simulations, including that from the resolution degra-

dation. This method can be used to establish a bench-

mark model for the evaluation of satellite rainfall

products. Establishing the hydrologic utility of GPM-era

QPE products, whose spatial resolution is anticipated to

be upgraded to 0.18 (;10 km; Smith et al. 2007; Huffman

et al. 2012), will be a subject of many future studies. The

results from this work should, therefore, be considered

FIG. 10. Relative bias and RMSE of 3B42RT-forced simulations from the two resulting lo-

cally calibrated parameter sets over the 2002–09 period. Error metrics are computed using

actual streamflow observations from gauged locations. The model using HR-MPE–based pa-

rameter set (dashed lines) is compared to the CR-MPE–based parameter set (solid lines) at

different streamflow threshold values.
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in the design of such studies. Additionally, accounting

for input’s resolution in the model calibration process

helps to prevent the necessity of recalibration every time

an upgrade on the algorithm for QPE generation is done

(e.g., to date, the 3B42 algorithm has been upgraded

seven times).

5. Summary and conclusions

This work was designed to explore the effects that

resolution of QPE has on hydrologic simulations in the

context of current and next generation satellite-based

QPE products. The study focused on the TarRiver basin

in coastal North Carolina, where a cascade of five catch-

ments with drainage areas ranging from 529 to 5709km2

were used to assess the scale dependence, regionalization

of parameter sets, and effect of QPE resolution on hy-

drologic simulations. A high-quality, high-resolutionQPE

product, used operationally in the U.S. National Weather

Service, was employed as the rainfall reference product.

The reference QPE product called MPE (4 km/1 h) was

resampled to current satellite-based QPE resolution in

space and time (25 km/3 h). Differences in rainfall esti-

mates between the high-resolution MPE (HR-MPE)

FIG. A1. Comparison of rain fields betweenHR-MPE and CR-MPE for the study area from 2002 to 2009: (a) mean annual rainfall over

the study area for HR-MPE and CR-MPE, (b) relative bias (%) for each year, (c) relative RMSE (%) for each year, (d) relative bias for

the whole period, and (e) relative RMSE for the whole period. Histograms summarizing the spatial variability of the errors are presented

for each panel. Computations are based on hourly rainfall estimates.
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and the coarse-resolution MPE (CR-MPE) were eval-

uated considering different error features, including

spatial structure and variability through an analysis of

100 events. A sensitivity analysis with a synthetic ex-

periment using the uncalibrated model was then per-

formed to effectively isolate the QPE resolution effect

on hydrologic simulations. Finally, the hydrologic model

was calibrated using measurements from the gauged

sites for the twoQPE resolutions (i.e., CR-MPE andHR-

MPE). The resulting calibrated models were then forced

with TRMM’s 3B42RT rainfall estimates. Conclusions

derived from this work are summarized as follows.

Degradation of QPE resolution has a clear impact on

rainfall fields in terms of global bias and aggregated er-

rors.Moreover, it was observed that resolution degradation

alters the spatial structure of rainfall, introducing con-

siderable amounts of aggregated error. This alteration

and its resulting error are directly proportional to the char-

acteristic spatial structure and scale of each storm event.

The sensitivity analysis on the overall impacts of res-

olution degradation on hydrologic simulations shows

that the global bias of rainfall is magnified while the

aggregated errors are dampened. These error propaga-

tion behaviors are correlated with the size of the basin.

The magnification of the bias increases with decreasing

basin area, reaching magnification factors of about 20.

The dampening of aggregated errors increases with in-

creasing basin size, also reaching dampening factors of

about 20. Furthermore, the dampening effect of aggre-

gated errors significantly decreases with increasing

streamflow values, while the magnification of bias is not

significantly affected.

The analysis on the three error features of rainfall

(namely, magnitude, spatial variability, and spatial

structure) indicates that errors in streamflow are mostly

related to the effects that resolution has on the magni-

tude of rainfall. Even though the spatial variability of

rainfall error is well correlated with the spatial variability

FIG. A2. Error evaluation of basin-averaged rainfall time series as a function of rainfall threshold at different

temporal scales (D, daily;M, monthly; S, seasonal; Y, annual): (a) relative bias for basin B1, (b) relative bias for basin

B5, (c) relative RMSE for basin B1, and (d) relative RMSE for basin B5. The 1-h scale refers to instantaneous rain

rates (disaggregated from 3h), while the remaining scales refer to values aggregated from 3-h rain rates. The values in

parentheses in the legend indicate the frequency associated to the threshold rainfall value (i.e., percentage of time

a given value occurred) based on nonzero data points.
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of streamflow error, the hydrologic filtering effect of the

basin obscures its impact on the errors at integration lo-

cations (i.e., basin outlets). Similarly, the effect on the

spatial structure of rainfall could not be well established

for the same reason and because specific conditions of

each event were not accounted for. However, this anal-

ysis indicated that events of significant streamflow error

were associated to error in the spatial structure of rainfall

from small-scale convection.

The results from the calibration procedure clearly

demonstrate that adjustment of model parameters can

be used as a mean to account for the effects of input’s

resolution over hydrologic simulations. The validation

with 3B42RT demonstrated that significant reduction in

relative bias is attained when using the parameter set

that accounted for input’s resolution.

Overall, these results illustrate the importance of

resolution and its close relation with scale for satellite-

based applications, particularly when determining the

hydrologic utility of satellite rainfall. Accounting for

rainfall’s resolution effect is essential when evaluating

satellite rainfall algorithms using a hydrologic model.

Likewise, this work indicates the significant improve-

ments that could potentially be expected from the next

generation satellite rainfall products associated with

GPM, considering the anticipated upgrade in resolution

and improvements in retrieval capabilities. Results

from this study indicate improvements due to resolution

are most needed in the smallest-scale basins for high-

magnitude events, such as flash floods. Furthermore, the

analysis on calibration results suggests that model cali-

bration needs to consider scale. Future studies need to

explore the issue on the persistent impact of basin scale

on aggregated errors. Likewise, it would be helpful to

extend some of the analysis performed herein to differ-

ent regions and to a wider range of basin sizes to improve

our understanding on issues such as 1) the transferability

of information from basin outlet to interior locations,

2) the transferability of systematic perturbations of par-

ticular model parameters to account for input resolution,

and 3) the characterization of the impact of resolution

degradation on particular storm types.

APPENDIX A

Error Evaluation of Rainfall Estimates after
Resolution Degradation

See Figs. A1 and A2.

APPENDIX B

List and Description of SAC-SMA
Model Parameters

See Table B1.
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